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Multi-constituent multi-satellite chemical data assimilation
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Decadal tropospheric chemistry reanalysis: TCR-2
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Free tropospheric and surface ozone validation
700-300 hPa: against TES (China) Surface ozone changes 2005-2014
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TES/OMI multispectral ozone products have also been
used to infer surface ozone (Colombi et al., in prep.) AO3 (ppb)



Regional model boundary conditions: Evaluation using AIRS/OMI
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—The assimilation improves the representation of plume transport across the Pacific
relative to AIRS/OMI

—Further improvements may be seen with assimilation of AIRS/OMI Os.
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CrlS single-footprint retrievals from MUSES developed under JPL TROPESS 5
CrlS provides detail spatial maps of complicated chemical responses linked to wildfires




CrlS composition data: 2020 California wildfires
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Ozone, 2020-09-12

* The model simulations demonstrate the relative importance of different processes.
» Assimilating CrlS data would comprehend understanding of more detailed processes (e.g., emissions)



CrlS composition data: COVID environmental impacts

700 hPa ozone, June 2020

Chemical reanalysis = CrIS
w/o assimilation - CrIS (no CriS DA)
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How does CrlS data inform us the COVID-19 impacts on tropospheric composition?




CrlS composition data: COVID environmental impacts
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Global emission changes and their impacts on ozone

Changes in NOx emissions = Changes in global ozone
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The ozone response strongly depends on the region and timing of lockdown




CrlS composition data: COVID environmental impacts

Ozone at 700 hPa, Feb-Jun 2020
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* Demonstrate the substantial influences of the COVID pandemic on FT ozone
 CrlS provides important information to calibrate these changes for the global troposphere.




Summary

* A 16 year tropospheric chemistry reanalysis has been conducted using multi-
constituent multi-sensor satellite data assimilation, in order to provide comprehensive
information on long-term and short-term (e.g., COVID-19) atmospheric composition
variablility associated with changes in human and natural activities.

 New LEO and GEO measurements and multi-spectral retrievals of composition from
JPL TROPESS, including CrlS and AIRS/OMI, provide much-improved spatial and

temporal resolution and coverage. They should lead to greater usefulness of satellite
measurements for air quality applications.
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Q1. What overarching science questions would you like to address with long-term
sounder composition records, given what you know about their quality and uncertainty?

A. Decadal/multi-year (e.g., ENSO) variations in atmospheric compositions, e.g., related to
human activity (combined with CO2), lightning, inter-continental and inter-hemispheric
long-range transport of air pollutants (O3, CO) and its precursors (e.g, PAN), STE, wildfires,
ozone chemistry regime (VOC/NOXx), nitrogen deposition (e.g., HNO3). Chemistry-climate
model simulation evaluation. Improving regional air quality forecast/reanalysis

Q2. What should be the highest priorities when developing new trace gas products for air
quality / climate monitoring?

A. Consistent long-term records, simultaneous retrievals of multiple key chemical species,
high spatial sampling around key urban areas
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Summary

Q3. What are the highest priorities in terms of composition data products / data fields /
information from sounder retrievals, from the perspective of chemical data
assimilation? Here you can even highlight current shortcomings, difficulties in using/
accessing the products, lack of available tools etc.

A. Effective QC (maximized data use with no very bad data!). Estimates of vertical
sensitivity and error covariances. Optional: error correlation information for neighbor
pixels (needed for making super observations).

Q4. Given that the LEO sounders (IASI, IASI-NG, CrlS) will continue to be in orbit till
~2040s, what, in your mind, are the key observational gaps?

A. Near-surface measurements (e.g., HIMAP or higher spectral resolution in the IR+UV

column measurements). TIR geostationary measurements over the US.
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